An In-Depth Analysis of Magnesium: Physiology, Homeostasis, and Clinical Significance

Chapter 1: Briefing Document

Executive Summary

Magnesium (Mg) is the second most abundant intracellular divalent cation and a fundamental cofactor in over 325 enzymatic reactions, positioning it as a critical regulator of cellular physiology. Its ubiquitous role extends from bioenergetics, where it is essential for the synthesis and utilization of ATP, to the structural integrity of nucleic acids (DNA and RNA) and membrane stabilization. The maintenance of magnesium homeostasis is therefore paramount for organismal health, and its dysregulation is implicated in a vast spectrum of pathologies.

Within the central nervous system (CNS), magnesium's role is particularly profound. It functions as a natural, voltage-dependent antagonist of the N-methyl-D-aspartate (NMDA) receptor, a key ion channel in glutamatergic neurotransmission. By modulating NMDA receptor activity, magnesium is central to the mechanisms of synaptic plasticity, including long-term potentiation (LTP), which underlies learning and memory. This function also forms the basis of its neuroprotective properties, as it mitigates the excitotoxic cell death cascade triggered by excessive glutamate release in pathological states such as traumatic brain injury (TBI), stroke, and neurodegenerative diseases.

Clinically, magnesium deficiency, or hypomagnesaemia, is a common and often underdiagnosed condition. A normal serum magnesium concentration ranges from 0.7 to 1.0 mmol/L, with levels below this threshold indicating deficiency. The causes are varied and include common medications (e.g., proton pump inhibitors, diuretics), gastrointestinal losses, renal wasting, and inadequate dietary intake. Symptoms are multisystemic, encompassing neuromuscular hyperexcitability (tremors, seizures), cardiovascular effects (tachycardia, arrhythmias), and central nervous system disturbances (apathy, confusion, depression). Management involves identifying and treating the underlying cause and providing oral or, in severe cases, intravenous magnesium replacement, with careful consideration for patients with renal insufficiency.

The therapeutic potential of magnesium is extensive. It has demonstrated efficacy in pain management and headache disorders, particularly migraine, by preventing central sensitization. It plays a protective role in the auditory system against noise-induced and ototoxic damage. Furthermore, emerging research highlights its significance in developmental and psychiatric disorders; supplementation with magnesium and vitamin B6 has been shown to ameliorate symptoms in children with Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), conditions associated with cellular magnesium depletion. This document synthesizes the extensive body of evidence from clinical guidance and advanced neuroscience research to provide a comprehensive overview of magnesium's pivotal role in health and disease.

1. The Fundamental Physiology of Magnesium

Magnesium is the fourth most abundant cation in the human body and the second most prevalent within the intracellular environment, surpassed only by potassium. Its distribution is primarily within bone (approximately 50%) and soft tissues, with less than 1% found in the extracellular compartment. Of the magnesium present in plasma, more than half is bound to proteins, with the remaining free ionized form (Mg2+), ranging from 0.53-0.67 mM, representing the metabolically active fraction.

Its biological importance stems from its function as an essential cofactor for over 325 enzymes. This involvement is critical for a plethora of core cellular processes:

- **Bioenergetics:** All enzymes that synthesize or utilize ATP, the primary energy currency of the cell, require magnesium. ATP exists predominantly in a chelated complex with a magnesium ion (Mg-ATP).
- Nucleic Acid Chemistry: Magnesium is indispensable for the synthesis of DNA and RNA, interacting with and stabilizing these essential molecules.
- Metabolism: It plays a central role in both aerobic and anaerobic metabolism, including glucose metabolism.
- Membrane Function: Magnesium contributes to the formation of phospholipids and the insertion of proteins into membranes, thereby ensuring membrane stabilization. It also regulates the activity of numerous ion channels (e.g., calcium and potassium channels) and is essential for maintaining the transmembrane gradients of sodium and potassium.
- Cellular Signaling and Proliferation: As a second messenger, magnesium is involved in signal transduction, cell proliferation, differentiation, and apoptosis.

Given this extensive involvement in fundamental biological reactions, inadequate magnesium levels can disrupt cellular function on a global scale.

2. Magnesium Homeostasis: Transport and Regulation

The body tightly regulates magnesium levels through a complex interplay of absorption in the gastrointestinal tract, reabsorption in the kidneys, and transport across cellular membranes.

2.1. Cellular Magnesium Transport

The movement of magnesium into and out of cells is facilitated by a sophisticated network of specialized channels and transporters.

Entry Mechanisms: The Transient Receptor Potential Melastatin (TRPM) subfamily of ion channels are considered the primary "gatekeepers" of magnesium transport.

- TRPM7: This protein is a unique fusion of an ion channel and a kinase domain (a "chanzyme"). It is ubiquitously expressed in mammalian cells and is permeable to both Mg2+ and Ca2+. Its activity is crucial for modulating cell growth, and TRPM7-deficient cells rapidly down-regulate their growth rate.
- TRPM6: Closely related to TRPM7, this chanzyme is uniquely localized in the colon and the renal distal convoluted tubule. It plays a specific and critical role in controlling intestinal Mg2+ absorption and renal Mg2+ reabsorption, thereby contributing to whole-body homeostasis. Mutations in the TRPM6 gene are the cause of *Hypomagnesaemia with Secondary Hypocalcaemia (HSH)*, a rare autosomal recessive disease.

Other proteins and protein families involved in magnesium entry include:

• Claudins: Specifically, Paracellin-1 (also known as Claudin-16) is a tight junction protein in the nephron that acts as a passive channel for the paracellular reabsorption of magnesium and calcium. Mutations cause Familial Hypomagnesaemia with

Hypercalciuria and Nephrocalcinosis (FHHNC). Claudin-19 forms a complex with Claudin-16 to regulate cation selectivity.

- MagT1: A protein encoded by a gene that is upregulated in response to low extracellular Mg2+ concentrations.
- SLC41 Family (A1, A2, A3): Initially thought to be solely efflux transporters, members of this family, particularly SLC41A2, have been shown to generate Mg2+ currents consistent with influx.
- NIPA Family: Proteins (NIPA1, NIPA2) that operate as Mg2+ transporters with varying specificity. Mutations in NIPA1 are linked to autosomal dominant hereditary spastic paraplegia (HSP).

Exit Mechanisms: The primary mechanism for extruding magnesium from the cell is the Na+/Mg2+ exchanger.

- Na+/Mg2+ Exchanger: This antiport system moves Mg2+ out of the cell in exchange for Na+ moving in. Its activity is dependent on the extracellular sodium gradient and can be regulated by hormonal stimuli via cAMP-dependent phosphorylation.
- **SLC41A1:** More recent evidence strongly suggests that this protein operates predominantly as a carrier favoring Mg2+ efflux rather than influx.

The following table summarizes key identified Mg2+ transporters in eukaryotes.

Family	Members	Apparent Km	Type of Transporter	Location
Entry Mechanisms				
TRPM	TRPM6, TRPM7	~0.7 mM	Channel	Cell Membrane
Claudins	Claudin-16, Claudin-19	N/A	Channel (Paracellular)	Tight Junctions (Kidney)
MagT	MagT1	~0.7 mM	Carrier	Cell Membrane
NIPA	NIPA1, NIPA2	0.66 mM, 0.31 mM	Carrier	Cell Membrane
Huntingtin	HIP14, HIP14L	0.87 mM, 0.74 mM	Carrier	Cell Membrane
Mrs2	Mrs2	~1.5 mM	Channel	Mitochondria
Exit Mechanisms				
Na+/Mg2+ Exchanger	(Not cloned)	15-20 mM	Antiport	Cell Membrane
SLC41	SLC41A1	~0.7 mM	Carrier	Cell Membrane

H+/Mg2+ Exchanger	AtMHX	~15 mM	Exchanger	Vacuole (Plants/Yeast)
----------------------	-------	--------	-----------	---------------------------

2.2. Hormonal and Metabolic Regulation

Magnesium extrusion from cells is not static but is dynamically regulated by hormones and metabolic state.

- cAMP-Dependent Extrusion: Hormones that elevate intracellular cyclic AMP (cAMP), such as those acting on β-adrenergic, glucagon, or PGE2 receptors, activate the Na+/Mg2+ exchanger via phosphorylation, leading to increased Mg2+ efflux. This response is rapid and serves to mobilize intracellular magnesium stores.
- cAMP-Independent Extrusion: Stimulation of α1-adrenergic receptors by agonists like phenylephrine also elicits Mg2+ extrusion. This process is additive to the cAMP pathway and appears to operate via a Ca2+-Calmodulin signaling cascade.
- ATP Depletion: Cellular insults that lead to a decrease in ATP content (e.g., hypoxia, exposure to ethanol or fructose) result in a major extrusion of magnesium. This is a consequence of two factors: the release of Mg2+ from its major intracellular buffer (ATP) and an increase in cellular acidification.

3. Magnesium in the Central Nervous System

The brain is a uniquely complex organ where tight regulation of the ionic environment is critical for function. Magnesium plays a multifaceted and indispensable role in CNS physiology.

3.1. Brain Magnesium Concentration and the Blood-Brain Barrier

The concentration of free cytosolic Mg2+ in the human brain has been assessed non-invasively using 31P-Magnetic Resonance Spectroscopy (31P-MRS). Studies focusing on the occipital lobes of healthy subjects found a mean concentration of **0.182 mM**. This is approximately half the concentration found in human calf muscle, a difference likely related to the lower ATP concentration in brain tissue compared to skeletal muscle (3 mM vs. 8 mM).

Magnesium levels in the cerebrospinal fluid (CSF) are kept relatively constant and slightly elevated compared to plasma due to active transport systems at the blood-brain barrier (BBB) and the blood-CSF barrier (BCSFB). The BBB, formed by the endothelial cells of brain capillaries, tightly regulates the passage of molecules. While the exact transcellular transport mechanisms are still being elucidated, TRPM6 and TRPM7 channels are likely to play a main role. The paracellular route is restricted by tight junctions, though specific claudins may contribute to Mg2+ conductance.

3.2. The Pivotal Role in Synaptic Function and Plasticity

Magnesium's most recognized function in the CNS is its interaction with the NMDA receptor, a subtype of ionotropic glutamate receptor.

• NMDA Receptor Blockade: At resting membrane potentials, the NMDA receptor channel is blocked by an extracellular magnesium ion. This block is voltage-dependent;

when the postsynaptic neuron is depolarized (e.g., by strong activation of nearby AMPA receptors), the Mg2+ ion is expelled from the channel pore.

- Coincidence Detection: This mechanism allows the NMDA receptor to function as a "coincidence detector," opening to allow Ca2+ influx only when two events occur simultaneously: (1) glutamate binding to the receptor and (2) strong postsynaptic depolarization.
- Synaptic Plasticity: The resulting influx of Ca2+ through the NMDA receptor triggers intracellular signaling cascades (involving kinases and phosphatases) that lead to long-lasting changes in synaptic strength. This is the molecular basis for Long-Term Potentiation (LTP) and Long-Term Depression (LTD), the primary cellular models for learning and memory.

The effects of modulating brain magnesium levels on synaptic function are complex and depend on the duration of the change:

- Short-Term Elevation: A rapid increase in extracellular Mg2+ strengthens the block on NMDA receptors. This reduces Ca2+ influx, which can inhibit the induction of LTP and impair learning acquisition. It also reduces presynaptic glutamate release by competing with Ca2+ for entry through voltage-gated calcium channels.
- Long-Term Elevation: Chronic elevation of brain Mg2+ leads to a compensatory upregulation in the expression of NR2B-containing NMDA receptors. This increases the number of available receptors, enhancing the synapse's capacity for plasticity and ultimately improving learning and memory functions.

4. Clinical Manifestations of Magnesium Deficiency (Hypomagnesaemia)

Hypomagnesaemia is a clinically significant electrolyte disturbance defined by a serum magnesium concentration below the normal range of **0.7–1.0** mmol/L. Its successful management depends on the correct identification of its presence, severity, and underlying cause.

4.1. Classification and Severity

The severity of hypomagnesaemia is determined by both the serum concentration and the presence of clinical signs and symptoms.

- Mild Hypomagnesaemia: 0.5 0.69 mmol/L
- Severe Hypomagnesaemia: < 0.5 mmol/L

The presence of ECG changes or significant neurological symptoms indicates clinically significant hypomagnesaemia, regardless of the absolute serum level, and warrants urgent attention due to the risk of life-threatening dysrhythmias.

4.2. Causes of Hypomagnesaemia

Medications are the most common cause of hypomagnesaemia. The causes can be broadly categorized as follows:

Category	Specific Causes	Urinary Mg Excretion
Medications	Proton Pump Inhibitors (PPIs), Diureties (thiazides or loops), Aminoglycosides, Amphotericin, Ciclosporin, Tacrolimus, Theophylline, Salbutamol, Cytotoxics (Cisplatin)	Variable
Renal Causes	Alcohol misuse*, Uncontrolled diabetes mellitus, Hypercalcaemia, Acquired tubular dysfunction, Recovery from acute tubular necrosis, Post-obstructive diuresis, Post-renal transplant, Genetic disorders (e.g., Bartter/Gitelman syndrome)	>1 mmol/24h (Renal Wasting)
GI Causes (Reduced Absorption)	Chronic Diarrhoea*, Laxative abuse, Malabsorption (e.g., Coeliac Disease), Vomiting, Refeeding syndrome, Bowel Fistula, Short Bowel Syndrome, Acute pancreatitis, Reduced dietary intake (rare)	<1 mmol/24h (GI Wasting)
*(Common causes)		

4.3. Signs and Symptoms

Hypomagnesaemia rarely occurs in isolation and is often accompanied by other electrolyte abnormalities, such as hypokalaemia, hypocalcaemia, and hypophosphataemia. If hypokalaemia (low potassium) does not respond to replacement therapy, co-existing hypomagnesaemia should always be suspected.

System	Signs and Symptoms
Musculoskeletal	Muscle twitching, tremor, tetany, cramps, seizures
Central Nervous System (CNS)	Apathy, depression, hallucinations, agitation, confusion, lethargy, delirium
Cardiovascular	Tachycardia, hypertension, dysrhythmias, increased digoxin toxicity
Biochemical	Hypokalaemia, hypophosphataemia, hypocalcaemia, hyponatraemia
ECG Changes	Prolonged PR interval, widened QRS complex, prolonged QTc, flattened T wave, atrial/ventricular dysrhythmias (e.g., Torsades de pointes)

4.4. Management in Primary Care

The management strategy is guided by the severity of the condition.

1. **Identify Need for Urgent Referral:** Patients with severe symptomatic hypomagnesaemia (e.g., seizures, significant ECG changes, tetany) require urgent admission to hospital for intravenous magnesium replacement.

- 2. **Correct the Underlying Cause:** Where possible, the causative factor should be addressed (e.g., stopping causative medications, treating diarrhoea, supporting alcohol cessation).
- 3. **Oral Replacement:** For mild or moderate asymptomatic hypomagnesaemia, oral supplements are the preferred treatment.
 - Agent: Magnesium aspartate (Magnaspartate) is the preferred oral therapy, with one sachet containing 10 mmol of Mg2+.
 - o **Dosage:** One sachet once or twice daily, depending on severity.
 - Monitoring: Serum magnesium should be monitored to assess response. A repeat
 measurement may be needed two weeks after completing treatment to ensure the
 deficiency has not recurred.
 - Side Effects: The most common side effect is diarrhoea, which can exacerbate magnesium loss.

4. Special Considerations:

- Chronic Kidney Disease (CKD): In patients with an eGFR < 30 mL/min/1.73 m2, there is a significant risk of hypermagnesaemia. Oral supplements should only be prescribed if essential, and the dose should be reduced by at least 50% with careful monitoring.
- Treatment Failure: If oral therapy is not tolerated or is ineffective, referral to a relevant secondary care specialty is required.

4.5. Magnesium Toxicity (Hypermagnesaemia)

If treatment-related magnesium toxicity is suspected, supplements must be discontinued immediately. The elderly and patients with renal insufficiency are at the highest risk.

- **Symptoms:** Hypotension, bradycardia, respiratory depression, depressed mental state, nausea, and vomiting.
- ECG Abnormalities: Bradycardia, prolonged PR, QRS, and QT intervals, complete heart block, and asystole.

5. Magnesium's Role in Neurological and Psychiatric Pathologies

Magnesium's fundamental role in CNS function positions it as a key factor in the pathophysiology and potential treatment of numerous neurological and psychiatric conditions.

5.1. Neuroprotection in Acute Brain Injury

Following traumatic CNS injuries like TBI and stroke, a cascade of secondary injury mechanisms, including excitotoxicity, mitochondrial dysfunction, inflammation, and oxidative stress, leads to progressive neuronal death. Magnesium offers neuroprotection by targeting multiple points in this cascade:

• Reducing Excitotoxicity: By blocking NMDA receptors, Mg reduces the toxic influx of Ca2+ that triggers cell death pathways.

- Mitochondrial Protection: Mg is essential for mitochondrial membrane stability and the coupling of oxidative phosphorylation. It can help preserve ATP production and reduce the release of pro-apoptotic factors like cytochrome c.
- Anti-inflammatory Effects: Magnesium deficiency is associated with a pro-inflammatory state, characterized by the release of cytokines (TNF-α, IL-1β) and neuropeptides like Substance P (SP). Mg therapy can help dampen this neuroinflammatory response.
- Vasodilation: Magnesium has vasodilatory properties, which can improve cerebral blood flow in ischemic conditions.

Despite strong preclinical evidence, large clinical trials, such as the FAST-MAG trial for subarachnoid haemorrhage, have shown mixed results, indicating that timing, dosage, and injury type are critical factors for therapeutic success.

5.2. Headache and Pain Syndromes

Low magnesium levels, particularly in the brain, have been strongly linked to headache disorders.

- Migraine and Cluster Headache: Studies using 31P-MRS have found significantly low
 cytosolic free magnesium in the brains of patients with various types of migraine (with
 and without aura) and cluster headache. This is hypothesized to be linked to a deficit in
 mitochondrial bioenergetics.
- Mechanism of Action: The antinociceptive (pain-reducing) effect of magnesium is primarily attributed to its antagonism of the NMDA receptor. This action prevents the development of central sensitization, a state of neuronal hyperexcitability in the spinal cord that amplifies and maintains pain states.
- Therapeutic Use: Intravenous magnesium sulphate is used for the acute treatment of migraine attacks, with some studies showing rapid and effective pain relief. It is also used as an adjuvant analysesic in the perioperative setting to reduce opioid requirements.

5.3. Neurodegenerative Diseases

Magnesium dysregulation is implicated in several chronic neurodegenerative diseases.

- Alzheimer's Disease (AD): AD patients often exhibit decreased Mg levels in serum and brain tissue. Mechanistically, magnesium has been shown to modulate the processing of Amyloid Precursor Protein (APP). Higher extracellular Mg levels promote the non-amyloidogenic α-secretase pathway, which cleaves APP to produce the neuroprotective sAPPα fragment and precludes the formation of the neurotoxic amyloid-β (Aβ) peptide. By enhancing synaptic plasticity and reducing excitotoxicity, Mg may also counteract the synaptic failure central to AD pathology.
- Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS): Epidemiological studies of neurodegenerative foci in the Western Pacific have linked a high incidence of PD and ALS to environments with severely low levels of both magnesium and calcium in the soil and drinking water. Animal models have shown that a low-Mg diet causes a significant loss of dopaminergic neurons, relevant to PD.

5.4. Stress, Anxiety, and Depression

A bidirectional, detrimental relationship exists between stress and magnesium.

• Stress-Induced Mg Depletion: Acute stress triggers a shift of Mg from the intracellular to the extracellular space. While initially protective, prolonged stress leads to increased urinary excretion and a progressive depletion of total body magnesium.

- Mg Deficiency and HPA Axis: Hypomagnesemia increases baseline activity of the hypothalamic-pituitary-adrenal (HPA) axis and sensitizes it to stress, leading to an exaggerated release of stress hormones like cortisol. Mg acts at multiple levels of the HPA axis to dampen this response.
- Depression: Dietary magnesium deficiency is correlated with an increased risk for major depression. The therapeutic effect of magnesium in depression is thought to be mediated by its role as an NMDA receptor antagonist, a mechanism of action shared with some antidepressant drugs.

5.5. Developmental Disorders: ADHD and Autism

Emerging evidence links cellular magnesium deficiency to neurodevelopmental disorders.

- ADHD and ASD: Studies have identified significantly lower levels of erythrocyte magnesium (Erc-Mg)—a marker of intracellular stores—in children with ADHD and Autism Spectrum Disorder (ASD). Parents of these children often exhibit similarly low levels, suggesting a possible genetic component related to magnesium transport.
- Mg-B6 Supplementation: Clinical observations have shown that supplementation with magnesium and vitamin B6 (which enhances cellular uptake of Mg) for several weeks can restore intracellular Mg levels and significantly reduce clinical symptoms of hyperactivity, impulsivity, aggression, and inattention in these children.
- Fragile X Syndrome: The successful management of behavioral symptoms in Fragile X syndrome with Mg-B6 supplementation suggests a deficit in magnesium may also contribute to the pathogenesis of this disorder.

6. Conclusion

Magnesium is a mineral of profound and multifaceted importance, acting as a master regulator of cellular function across all biological systems. Its role in the central nervous system is particularly critical, where it governs synaptic plasticity, protects against excitotoxic injury, and modulates the pathways underlying pain, stress, and mood. The widespread prevalence of dietary inadequacy, coupled with depletion from common medications and chronic diseases, makes hypomagnesaemia a significant public health concern. A comprehensive understanding of magnesium's physiology and the clinical consequences of its deficiency is essential for diagnosis, management, and the exploration of its vast therapeutic potential in neurology, psychiatry, and beyond.

Chapter 2: Study Guide

Quiz: Test Your Understanding

Answer the following questions in 2-3 sentences each based on the provided information.

1. What is hypomagnesaemia, and what are the two most common categories of medications that cause it?

- 2. Describe the primary role of magnesium at a glutamatergic synapse and why this is important for learning and memory.
- 3. What are TRPM6 and TRPM7, and why are they referred to as "chanzymes"?
- 4. Explain the hypothesized connection between low brain magnesium levels and migraine headaches.
- 5. What are the primary signs of magnesium toxicity (hypermagnesaemia), and which patient populations are most at risk?
- 6. How does magnesium exert a neuroprotective effect following a traumatic brain injury? Name at least two mechanisms.
- 7. Describe the paradoxical role of magnesium deficiency in the context of cancer development and progression.
- 8. What is the proposed mechanism for the therapeutic effect of Mg-B6 supplementation in children with ADHD?
- 9. According to the NHS guidance, what is the normal serum magnesium concentration range, and what values define mild versus severe hypomagnesaemia?
- 10. Why is it critical to check a patient's magnesium level if they have hypokalaemia that is not responding to potassium replacement?

Answer Kev

- 1. Hypomagnesaemia is a clinical condition characterized by a serum magnesium concentration below the normal range of 0.7-1.0 mmol/L. The two most common medication categories implicated as causes are Proton Pump Inhibitors (PPIs) and diuretics (both thiazide and loop diuretics).
- 2. At a glutamatergic synapse, magnesium acts as a voltage-dependent blocker of the NMDA receptor channel. This mechanism is crucial for long-term potentiation (LTP), as it ensures the channel only opens to allow calcium influx during significant neuronal activity, a process fundamental to forming memories.
- 3. TRPM6 and TRPM7 are ion channels belonging to the Transient Receptor Potential Melastatin family that are permeable to magnesium. They are called "chanzymes" because they are unique proteins that combine the function of an ion channel with an intrinsic enzyme (kinase) domain.

4. Studies using 31P-MRS have shown that patients with migraine and cluster headaches have significantly reduced cytosolic free magnesium in their brains. The leading hypothesis is that this low magnesium level is secondary to a deficit in mitochondrial bioenergetics, as magnesium is essential for mitochondrial membrane stability and energy production.

- 5. The primary signs of magnesium toxicity include hypotension, bradycardia, respiratory depression, and a depressed mental state. The patient populations most at risk for toxicity from magnesium supplementation are the elderly and individuals with chronic kidney disease or renal insufficiency.
- 6. Magnesium exerts neuroprotection by mitigating the secondary injury cascade. It reduces excitotoxicity by blocking NMDA receptors, thereby limiting toxic calcium influx. It also helps stabilize mitochondrial function, reduce inflammation, and improve cerebral blood flow through its vasodilatory effects.
- 7. Magnesium deficiency's role in cancer is paradoxical. It can inhibit the growth of the primary tumor by impairing angiogenesis and directly slowing cell proliferation. However, it simultaneously promotes metastasis by increasing oxidative stress and inflammation, which can lead to genetic instability and the generation of more aggressive, invasive cells.
- 8. Children with ADHD have been found to have low intracellular magnesium levels (measured as erythrocyte Mg). The therapeutic effect of Mg-B6 supplementation is proposed to work by correcting this cellular magnesium depletion. Vitamin B6 is included as it enhances the cellular uptake of magnesium.
- 9. The normal serum magnesium concentration is 0.7–1.0 mmol/L. Mild hypomagnesaemia is defined as a concentration of 0.5-0.69 mmol/L, and severe hypomagnesaemia is defined as a concentration below 0.5 mmol/L.
- 10. Magnesium is essential for normal potassium homeostasis. In a state of hypomagnesaemia, the kidneys are unable to conserve potassium effectively, leading to persistent renal potassium loss. Therefore, hypokalaemia (low potassium) cannot be corrected with potassium replacement alone until the underlying magnesium deficiency is also treated.

Essay Questions

The following questions are designed to test a deeper, synthetic understanding of the material. Do not provide answers.

- 1. Analyze the multifaceted role of magnesium in the central nervous system, covering its function in synaptic plasticity, neuroprotection, and its implications for neurodegenerative diseases like Alzheimer's.
- 2. Discuss the clinical management of hypomagnesaemia in a primary care setting, as outlined in the provided NHS guidance. Your answer should detail the process from diagnosis and severity assessment to identifying causes and implementing treatment, including special considerations.

3. Critically evaluate the evidence presented for magnesium's therapeutic role in pain management and headache disorders. What are the primary proposed mechanisms of action?

- 4. The relationship between stress and magnesium is described as a "vicious circle." Elaborate on this relationship, explaining how stress affects magnesium levels and how magnesium deficiency, in turn, exacerbates the physiological response to stress.
- 5. Explore the complex and often paradoxical roles of magnesium and its transporters (e.g., TRPM channels) in both cell survival and cell death, drawing on examples from cancer, apoptosis, and ischemic injury.

Glossary of Key Terms

Term	Definition	
31P-MRS	(31P-Magnetic Resonance Spectroscopy) A non-invasive imaging technique used to measure the concentration of phosphorus-containing metabolites, such as ATP, in living tissue. It is used to assess cytosolic free magnesium concentration by measuring the chemical shift of β -ATP.	
Apoptosis	A form of programmed cell death that is a normal part of development and aging, but can also be triggered by disease or injury. It involves a cascade of cellular events leading to cell shrinkage, fragmentation, and removal by phagocytes.	
Blood-Brain Barrier (BBB)	A highly selective semipermeable border of endothelial cells that prevents solutes in the circulating blood from non-selectively crossing into the extracellular fluid of the central nervous system where neurons reside.	
Central Sensitization	A condition of nervous system hyperexcitability that develops in response to persistent or intense noxious stimuli. It results in pain hypersensitivity and is a key mechanism in chronic pain states; it is primarily mediated by NMDA receptors in the spinal cord.	
Chanzyme	A protein that combines the functions of an ion channel and an enzyme. TRPM6 and TRPM7 are examples, possessing both a cation channel pore and an intrinsic kinase domain.	
Claudins	A family of proteins that are the most important components of tight junctions, where they establish the paracellular barrier that controls the flow of molecules in the intercellular space between cells.	
eGFR	(Estimated Glomerular Filtration Rate) A measure of how well the kidneys are cleaning the blood, calculated from serum creatinine levels, age, sex, and race. It is a key indicator of renal function.	

Excitotoxicity	The pathological process by which nerve cells are damaged or killed by excessive stimulation by neurotransmitters such as glutamate. This process involves a massive influx of calcium through NMDA receptors, leading to a cascade of neurotoxic events.
Hypermagnesaemia	An electrolyte disturbance in which there is an abnormally high level of magnesium in the blood. It is most often seen in patients with renal failure.
Hypokalaemia	A condition in which the concentration of potassium in the blood is low. It can be caused or exacerbated by hypomagnesaemia.
Hypomagnesaemia	An electrolyte disturbance in which there is an abnormally low level of magnesium in the blood, defined as a serum concentration below 0.7 mmol/L.
Long-Term Potentiation (LTP)	A persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons, and it is a key cellular mechanism underlying learning and memory.
NMDA Receptor	(N-methyl-D-aspartate Receptor) A subtype of ionotropic glutamate receptor that is permeable to calcium and is fundamentally important for controlling synaptic plasticity and memory function. It is uniquely blocked by magnesium in a voltage-dependent manner.
Proton Pump Inhibitors (PPIs)	A class of medications that cause a long-lasting reduction of gastric acid production. They are a common cause of drug-induced hypomagnesaemia.
Torsades de pointes	A specific, life-threatening form of polymorphic ventricular tachycardia that can be caused by severe hypomagnesaemia and is characterized by a distinctive appearance on an electrocardiogram (ECG).
TRPM	(Transient Receptor Potential Melastatin) A subfamily of transient receptor potential ion channels. TRPM6 and TRPM7 are key members that function as primary magnesium transport channels in the body.

Chapter 3: Frequently Asked Questions (FAQs)

1. Why is magnesium so important for the brain? Magnesium is critical for brain function primarily because it acts as a gatekeeper for the NMDA receptor, a key channel involved in learning, memory, and neuronal communication. By blocking this channel at rest, magnesium prevents excessive neuronal firing. This role is fundamental to synaptic plasticity and also protects brain cells from excitotoxicity, a major cause of cell death in conditions like stroke and traumatic brain injury.

2. What are the most common causes of low magnesium (hypomagnesaemia)? The most frequent causes of hypomagnesaemia are medications, particularly proton pump inhibitors (PPIs) used for acid reflux and diuretics (both thiazide and loop types). Other common causes include conditions that cause gastrointestinal losses, such as chronic diarrhoea and laxative abuse, as well as renal wasting of magnesium, which is often associated with alcohol misuse.

- 3. What are the symptoms of magnesium deficiency? Symptoms of magnesium deficiency are broad and can affect multiple systems. Neuromuscular symptoms are common, including muscle twitching, tremors, cramps, and even seizures in severe cases. CNS effects can include apathy, depression, agitation, and confusion. Cardiovascular signs include tachycardia and arrhythmias, while associated biochemical changes often include low potassium and calcium levels.
- **4.** Can magnesium supplements help with migraines? There is strong evidence linking low brain magnesium levels to a higher susceptibility to migraines. The proposed mechanism is that magnesium helps prevent central sensitization and cortical spreading depression, key events in migraine attacks. Clinical studies have shown that intravenous magnesium sulphate can be an effective treatment for acute migraine attacks, and oral supplementation may help with prevention in some individuals.
- 5. Is it possible to take too much magnesium? What are the risks? Yes, it is possible to develop magnesium toxicity (hypermagnesaemia), although it is rare in individuals with normal kidney function as the kidneys are very efficient at excreting excess magnesium. The risk is significantly higher for people with chronic kidney disease and the elderly. Symptoms of toxicity include nausea, hypotension (low blood pressure), bradycardia (slow heart rate), respiratory depression, and, in severe cases, cardiac arrest.
- **6.** How is magnesium deficiency diagnosed and treated? Magnesium deficiency is diagnosed with a blood test measuring the serum magnesium concentration, with a level below 0.7 mmol/L indicating hypomagnesaemia. Treatment begins with identifying and correcting the underlying cause if possible (e.g., stopping a medication). For mild to moderate deficiency, oral supplements like magnesium aspartate are used. In severe or symptomatic cases, intravenous magnesium is required in a hospital setting.
- 7. What is the connection between alcohol consumption and magnesium levels? Chronic alcohol misuse is a common cause of hypomagnesaemia. Alcohol has a diuretic effect on the kidneys, causing increased urinary excretion and wasting of magnesium. This depletion can contribute to some of the neurological symptoms seen in alcohol withdrawal and may be involved in the development of alcohol dependence.
- 8. Why is magnesium therapy being investigated for brain injuries like stroke and TBI? Magnesium is investigated for brain injuries because of its powerful neuroprotective properties. It directly counteracts the main drivers of secondary injury that occur after the initial trauma. Its primary mechanisms include blocking NMDA receptors to reduce excitotoxicity, stabilizing mitochondria to preserve energy production, reducing inflammation, and improving blood flow to the injured brain tissue.
- 9. Does magnesium play a role in developmental disorders like ADHD and autism? Emerging research suggests a significant link. Studies have found that children with ADHD and Autism Spectrum Disorder (ASD) often have lower intracellular magnesium levels compared to their peers. Clinical reports indicate that supplementation with magnesium and vitamin B6 (which

aids cellular uptake) can significantly reduce symptoms like hyperactivity, aggression, and inattention in these children.

10. What is the Blood-Brain Barrier and how does magnesium cross it? The Blood-Brain Barrier (BBB) is a protective layer of specialized endothelial cells that tightly controls which substances can pass from the blood into the brain, maintaining a stable environment for neurons. Magnesium crosses this barrier via active transport systems, rather than simple diffusion. The TRPM family of channels, specifically TRPM6 and TRPM7, are believed to play a key role in this transcellular transport, ensuring the brain receives the magnesium it needs.

.....

Chapter 4: Timeline of Key Research Findings and Publications

This timeline highlights key publications and discoveries related to magnesium's role in the central nervous system and clinical medicine, as referenced in the source documents.

Date	Finding / Publication	Significance
1905	Meltzer and Auer	Early pioneers in the study of magnesium and its effects on the brain, whose work was noted as foundational.
1969	Olney, J.	Proposed the concept of excitotoxicity , describing how excessive stimulation by excitatory amino acids can lead to neuronal death. This concept is central to understanding magnesium's neuroprotective role.
1982	Ising, H., et al.	Published findings showing that Noise-Induced Hearing Loss (NIHL) in guinea pigs increased with decreasing Mg2+ content in their drinking water, establishing an early link between magnesium status and auditory health.
1984	Mayer, M.L., et al.	Described the critical finding that extracellular magnesium blocks the NMDA receptor channel in a voltage-dependent manner , providing the fundamental mechanism for magnesium's role in synaptic plasticity.
1994	Attias, J., et al.	Conducted a human study demonstrating the prophylactic effect of oral magnesium supplementation in reducing the frequency and severity of NIHL in military recruits exposed to hazardous noise.
1996	Iotti, S., et al.	Published a key study using 31P-MRS to measure the free magnesium concentration in the human brain, establishing a baseline value of 0.182 mM in the occipital lobes.
1996	Mauskop, A., et al.	Conducted an influential study showing that intravenous magnesium sulphate provided rapid relief for acute migraine headaches in patients with low serum ionized magnesium levels.

1999	Simon, D.B., et al.	Identified mutations in the PCLN-1 gene, which encodes the tight junction protein Paracellin-1 (Claudin-16) , as the cause of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC).
2001	Nadler, M.J., et al.	Provided the first key evidence for the role of the TRPM7 channel in transporting Mg2+ into cells and modulating cell growth, identifying it as a crucial component of magnesium homeostasis.
2001	Lodi, R., et al.	Used 31P-MRS to demonstrate that cytosolic free magnesium was significantly reduced in the occipital lobes of patients with various types of migraine and cluster headache, linking the disorders to a bioenergetic deficit.
2002	Schlingmann, K.P., et al.	Discovered that loss-of-function mutations in the TRPM6 gene are responsible for Hypomagnesaemia with Secondary Hypocalcaemia (HSH), confirming its role as a key epithelial magnesium channel.
2003	Aarts, M., et al.	Published a seminal paper demonstrating that the TRPM7 channel is an essential mediator of anoxic neuronal death, linking it to the excitotoxic cascade following ischemia.
2006	Mousain-Bosc, M., et al.	Published findings from a study showing that Mg-B6 supplementation restored intracellular magnesium levels and significantly reduced clinical symptoms in children with ADHD.
2006	Eby, G.A. & Eby, K.L.	Proposed a hypothesis and case histories suggesting rapid recovery from major depression with magnesium treatment, highlighting its potential as a therapy for mood disorders.
2007	Schlingmann, K.P., et al.	Coined the term "gatekeepers of human magnesium metabolism" to describe the central role of the TRPM6 and TRPM7 channels in regulating whole-body magnesium levels.
はひまひ	Slutsky, I., et al.	Demonstrated that chronically elevating brain magnesium levels in rats enhanced short-term synaptic facilitation, long-term potentiation (LTP), and improved performance in learning and memory tasks.
2024	Jones, C. & Jones, A.	Authored the "HYPOMAGNESAEMIA Guidance for the assessment and management in primary care" for the York and Scarborough Teaching Hospitals NHS Foundation Trust, providing up-to-date clinical practice guidelines.
	l.	

Chapter 5: List of Sources

Primary Documents

Jones, C., & Jones, A. (2024, February). *HYPOMAGNESAEMIA Guidance for the assessment and management in primary care* (Version 1). York and Scarborough Teaching Hospitals NHS Foundation Trust, Scarborough, Hull and York Pathology Service.

Vink, R., & Nechifor, M. (Eds.). (n.d.). *Magnesium in the Central Nervous System* [Electronic edition]. The University of Adelaide Press. Retrieved from https://www.adelaide.edu.au/press/titles/magnesium/

Peer-Reviewed Articles and Book Chapters (Selected)

Aarts, M., & Tymianski, M. (2005). TRPM7 and ischemic CNS injury. Current Neurovascular Research, 2, 197-203.

Aarts, M., Iihara, K., Wei, W. L., Xiong, Z. G., Arundine, M., Cerwinski, W., ... & Tymianski, M. (2003). A key role for TRPM7 channels in anoxic neuronal death. *Cell*, 115(7), 863-877.

Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. *Neurobiology of Disease*, 37(1), 13-25.

Abaamrane, L., Raffin, F., Gal, M., Avan, P., & Sendowski, I. (2009). Long-term administration of magnesium after acoustic trauma improves hearing recovery. *Noise and Health*, 11(43), 90-96.

Akashi, Y. J., Nef, H. M., Lyon, A. R. (2008). Epidemiology and pathophysiology of Takotsubo cardiomyopathy. *Nature Reviews Cardiology*, 5(7), 387-397.

Andrási, E., Pár, A., Molnár, Z., & Kövári, Z. (2000). Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. *Journal of Alzheimer's Disease*, 2(2), 105-110.

Arcioni, R., Palmisani, S., Tigano, S., Santorsola, C., Sauli, V., Romano, S., ... & Pinto, G. (2007). Combined intrathecal and epidural magnesium sulfate supplementation of spinal anesthesia to reduce post-operative analgesic requirements: a prospective, randomized, double-blind, controlled trial in patients undergoing major orthopedic surgery. *Acta Anaesthesiologica Scandinavica*, 51(4), 482-489.

Attias, J., Weisz, G., Almog, S., Shahar, A., Wiener, M., Joachims, Z., ... & Ising, H. (1994). Oral magnesium intake reduces permanent hearing loss induced by noise exposure. *The American Journal of Otolaryngology*, 15(1), 26-32.

Barbiroli, B., Lodi, R., Cortelli, P., Iotti, S., Monari, L., Pierangeli, G., ... & Montagna, P. (1992). Abnormal brain mitochondrial energy metabolism in migraine. *Neurology*, 42(6), 1209-1214.

Becerra-Tomás, N., Díaz-López, A., Rosique-Esteban, N., Ros, E., Buil-Cosiales, P., Corella, D., ... & Salas-Salvadó, J. (2019). Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. *Clinical Nutrition*, 38(3), 1251-1258.

Bielefeld, D., Kessemeier, D., Vay, S., & Giesbertz, P. (2020). The effects of legume consumption on markers of glycaemic control in individuals with and without diabetes mellitus: a systematic literature review of randomised controlled trials. *Nutrients*, 12(7), 2093.

Buvanendran, A., McCarthy, R. J., Kroin, J. S., Leong, W., Perry, P., & Tuman, K. J. (2002). Intrathecal magnesium prolongs fentanyl analgesia: a prospective, randomized, controlled trial. *Anesthesia & Analgesia*, 95(3), 661-666.

Calado, A., Neves, P. M., Santos, T., & Ravasco, P. (2018). The effect of flaxseed in breast cancer: a literature review. *Frontiers in Nutrition*, 5, 4.

Chubanov, V., Waldegger, S., Mederos y Schnitzler, M., Vitzthum, H., Sassen, M. C., Seyberth, H. W., ... & Gudermann, T. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. *Proceedings of the National Academy of Sciences*, 101(9), 2894-2899.

Chui, D. H., Tanahashi, H., Ozawa, K., Ikeda, S., Checler, F., Ueda, O., ... & Tabira, T. (1999). Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. *Nature Medicine*, 5(5), 560-564.

Dai, Q., Shrubsole, M. J., Ness, R. M., Schlundt, D., Cai, Q., Smalley, W. E., ... & Zheng, W. (2007). The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. *The American Journal of Clinical Nutrition*, 86(3), 743-751.

DeMartino, P., & Cockburn, D. W. (2020). Resistant starch: impact on the gut microbiome and health. Current Opinion in Biotechnology, 61, 66-72.

Durlach, J. (1990). Magnesium and aging. II. Clinical data: a critical review. *Magnesium Research*, 3(2), 123-136.

Eby, G. A., & Eby, K. L. (2006). Rapid recovery from major depression using magnesium treatment. *Medical Hypotheses*, 67(2), 362-370.

Falcomer, A. L., Riquette, R. F. R., de Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health benefits of green banana consumption: A systematic review. *Nutrients*, 11(6), 1222.

Gamelin, L., Boisdron-Celle, M., Delva, R., Guérin-Meyer, V., Ifrah, N., Morel, A., & Gamelin, E. (2004). Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. *Clinical Cancer Research*, 10(12 Pt 1), 4055-4061.

Goksel, B. K., Torun, D., Nergizoglu, G., Sezer, S., Ozdemir, F. N., & Haberal, M. (2006). The role of magnesium in the pathogenesis of hemodialysis-related headache. *Clinical Nephrology*, 66(4), 270-273.

Graziany Machado de Souza, R., Schincaglia, R. M., Pimentel, G. D., & Mota, J. F. (2017). Nuts and human health outcomes: A systematic review. *Nutrients*, 9(12), 1311.

Hoane, M. R. (2007). Assessment of cognitive function following magnesium therapy in the traumatically injured brain. *Magnesium Research*, 20(4), 229-236.

Iotti, S., & Malucelli, E. (2008). In vivo assessment of Mg2+ in human brain and skeletal muscle by 31P-MRS. *Magnesium Research*, 21(3), 157-162.

Jayedi, A., & Shab-Bidar, S. (2020). Fish consumption and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. *Advances in Nutrition*, 11(5), 1123-1133.

Joachims, Z., Netzer, A., Ising, H., Gunter, T., & Seligmann, H. (1983). The influence of daily noise exposure and magnesium intake on the hearing of the rat. *Magnesium Bulletin*, 5, 151-155.

Landfield, P. W., & Morgan, G. A. (1984). Chronically elevating plasma Mg2+ improves hippocampal frequency potentiation and reversal learning in aged and young rats. *Brain Research*, 322(1), 167-171.

Le Prell, C. G., Hughes, L. F., & Miller, J. M. (2007a). Free radical scavengers, vitamins A, C, and E, plus magnesium reduce noise trauma. *Free Radical Biology and Medicine*, 42(9), 1454-1463.

Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wu, C., ... & Zhou, Y. (2021). Green leafy vegetable and lutein intake and multiple health outcomes. *Food Chemistry*, 360, 130145.

Lodi, R., Iotti, S., Cortelli, P., Pierangeli, G., Cevoli, S., Clementi, V., ... & Barbiroli, B. (2001). Deficient brain energy metabolism in cluster headache. *Annals of Neurology*, 49(4), 523-526.

Magrone, T., & Jirillo, E. (2017). Cocoa and dark chocolate polyphenols: from biology to clinical applications. *Frontiers in Immunology*, 8, 677.

Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets—a review. *Nutrients*, 11(11), 2661.

Mauskop, A., Altura, B. T., & Altura, B. M. (1996). Serum ionized magnesium levels and serum ionized calcium/ionized magnesium ratios in women with menstrual migraine. *Headache: The Journal of Head and Face Pain*, 36(3), 162-165.

McRae, M. P. (2017). Health benefits of dietary whole grains: an umbrella review of metaanalyses. *Journal of Chiropractic Medicine*, 16(1), 10-18.

Melo, D., Machado, T. B., & Oliveira, M. B. P. P. (2019). Chia seeds: an ancient grain trending in modern human diets. *Food & Function*, 10(6), 3068-3089.

Mousain-Bosc, M., Roche, M., Polge, A., Pradal-Prat, D., Rapin, J., & Bali, J. P. (2006). Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. I. Attention deficit hyperactivity disorders. *Magnesium Research*, 19(1), 46-52.

Nageris, B. I., Ulanovski, D., & Attias, J. (2004). Magnesium treatment for sudden sensorineural hearing loss. *The Annals of Otology, Rhinology, and Laryngology*, 113(8), 672-675.

Nadler, M. J., Hermosura, M. C., Inabe, K., Perraud, A. L., Zhu, Q., Stokes, A. J., ... & Scharenberg, A. M. (2001). LTRPC7 is a Mg.ATP-inhibited channel required for cell viability. *Nature*, 411(6837), 590-595.

Oyanagi, K., Kawakami, E., Kikuchi, H., Arawaka, S., Nagasao, J., Hashimoto, T., ... & Kitamura, T. (2006). Magnesium deficiency over generations in rats with special references to the pathogenesis of parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. *Neuropathology*, 26(2), 115-128.

Peiretti, P. G., & Meineri, G. (2017). Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. *Natural Product Research*, 31(18), 2178-2182.

Ryu, J. H., Kang, M. H., Park, K. S., & Do, S. H. (2009). Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia. *British Journal of Anaesthesia*, 103(3), 415-420.

Scheibe, F., Haupt, H., Ising, H., & Cherny, L. (2001). Preventive and therapeutic effect of magnesium in the hearing system. *Noise and Health*, 3(12), 79.

Schlingmann, K. P., Weber, S., Peters, M., Niemann Nejsum, L., Vitzthum, H., Klingel, K., ... & Seyberth, H. W. (2002). Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. *Nature Genetics*, 31(2), 166-170.

Slutsky, I., Abumaria, N., Wu, L. J., Huang, C., Zhang, L., Li, B., ... & Liu, G. (2010). Enhancement of learning and memory by elevating brain magnesium. *Neuron*, 65(2), 165-177.

U.S. Department of Agriculture, Agricultural Research Service. (2024). FoodData Central. Retrieved from http://fdc.nal.usda.gov

Weng, K. G., & Chen, G. (2017). Soy food intake and risk of gastric cancer: a systematic review and meta-analysis of observational studies. *Medicine*, 96(34), e7802.

Whang, R., Oei, T. O., & Watanabe, A. (1985). Frequency of hypomagnesemia in hospitalized patients receiving digitalis. *Archives of Internal Medicine*, 145(4), 655-656.

Yamagata, K. (2019). Soy isoflavones inhibit endothelial cell dysfunction and prevent cardiovascular disease. *Journal of Cardiovascular Pharmacology*, 74(3), 205-212.

This document can be inaccurate; please double check its content. For more information visit PowerBroadcasts.com

