Comprehensive Report on Electric Power Systems: History, Technology, Markets, and Future Outlook

Chapter 1: Briefing Document: The Global Electric Power Landscape

Electricity is the foundational energy of modern civilization, an invisible force that powers industries, illuminates cities, and connects the global community. Its generation, transmission, and distribution constitute one of the most complex and critical infrastructures in the world. Understanding this sector is paramount for effective strategic planning, investment, and policymaking in an era defined by technological disruption and the urgent need for decarbonization. This briefing document synthesizes the fundamental principles, historical evolution, technological landscape, and market structures that define the global electric power sector, providing a comprehensive and analytical overview to inform strategic decision-making at the highest levels.

1.1. Executive Summary

This report provides a multi-faceted analysis of the global electric power system. The most critical takeaways for strategic consideration are synthesized below:

- Strategic Consideration: As a secondary energy carrier, electricity's environmental and economic profile is wholly dependent on the primary sources used for its generation. This reality creates a critical leverage point for policy intervention, where shifting the generation mix directly alters national energy security, economic stability, and environmental outcomes.
- **Historical Precedent:** The modern Alternating Current (AC) grid is the direct result of the late 19th-century "War of Currents," where AC's efficiency in long-distance transmission via transformers proved decisive over Direct Current (DC). This historical outcome underscores the enduring principle that physical efficiency and economic scalability are the primary drivers of dominant infrastructure design.
- Technological Imperative: A life-cycle analysis of generation technologies reveals critical trade-offs. While renewable sources exhibit near-zero operational emissions, their material intensity for construction is significantly higher than that of fossil fuels. This implies a strategic imperative to secure supply chains for steel, cement, and critical minerals as a prerequisite for a successful energy transition, shifting geopolitical focus from fuel resources to material resources.
- Market Divergence: The United States and the European Union have architected distinct wholesale power markets. The U.S. model, a legacy of breaking up vertically integrated monopolies, uses regional Independent System Operators (ISOs) and Locational Marginal Pricing (LMP) to manage congestion. The EU model uses national Transmission System Operators (TSOs) and bidding zones interconnected via sophisticated market coupling algorithms to create a unified cross-border market.
- Decarbonization Mandate: The global sector is mandated by climate targets, such as the 2° Paris Agreement goal, to undergo a profound transition toward decarbonization. This shift presents immense challenges in managing intermittency and grid stability but also offers significant economic opportunities. Life-cycle data indicates that renewable energy

systems are more labor-intensive per unit of energy, portending substantial net job growth throughout the transition.

1.2. The Fundamental Nature of Electricity

At its core, electricity is the phenomenon associated with the flow of electric charge. All matter is composed of atoms, which contain a nucleus of positively charged protons and uncharged neutrons, surrounded by negatively charged electrons. Electricity is generated by the controlled movement of these electrons.

There are two primary forms of electricity:

- Static Electricity: This involves stationary electric charges that build up on the surface of a material, such as when rubbing amber with fur, an observation first recorded by Thales of Miletus around 600 BCE.
- Current Electricity: This is the form that powers our world, consisting of moving electric charges—a continuous flow of electrons—through a conductor, such as a copper wire, in a closed circuit.

m.		1	-14 ! 1		1 '	1	¢	
10	quantiiv and	anaivze	erectricar	systems.	severai	kev units o	f measurement	are usea:

Unit	Symbol	Measures
Ampere	ΙΔ	The flow of electric charge, or current . It denotes the number of electrons passing a point in a circuit over a given time.
Volt	I V /	The electrical pressure or force that pushes electrons through a circuit, also known as electric potential difference.
Ohm	I()	The resistance or opposition to the flow of electrical current. Materials with low resistance are good conductors.

These units are interrelated. Power, the rate at which electrical energy is transferred or used, is measured in **Watts (W)**. One watt is the rate of work done when one ampere of current flows through a circuit with an electrical potential difference of one volt.

Crucially, electricity is a **secondary energy source**. It is not harvested directly from nature like primary sources such as coal, natural gas, wind, or solar energy. Instead, it must be generated by converting these primary sources into electrical energy at a power plant. This conversion process is what makes electricity a versatile and transportable energy carrier.

1.3. A Comparative Analysis of Power Generation Technologies

Effective energy policy and investment depend on a clear, life-cycle-based understanding of the distinct impacts of different electricity generation technologies. A comprehensive comparison reveals significant trade-offs in material consumption, greenhouse gas emissions, and the overall energy-economic viability of each option, with profound implications for national strategy.

The following table summarizes these key metrics for a selection of representative technologies, based on a standardized life-cycle assessment.

Comparison of Electricity Generation Technologies

Technology Type	Energy Source	Required (tonnes/PJ)	Emissions (tonnes CO2 eq./PJ)	Gross External Energy Ratio (GEER)
Pulverized Hard Coal (PH-coal)	Non- renewable	Steel: 111, Cement: 366	321,791	11.4
CCGT Baseload (Natural Gas)	renewable	Steel: 42, Cement: 65	123,981	12.8
EPR Gen III Nuclear	Non- renewable	Steel: 406, Cement: 1358	2,500	34.8
Onshore Wind (On-Wind)	Renewable	Steel: 1205, Cement: 1320	5,500	13.5
Offshore Wind (Off-Wind)	Renewable	Steel: 1391, Cement: 1419	4,217	8.9
Polysilicon Solar- PV (Spain)	Renewable	Steel: 400, Glass: 569, Silicon: 30	12,873	9.6
Hydro-electric Dam (Hyd-Dam)	Renewable	Steel: 180, Cement: 5864	1,811	24.7
Hydro-electric Run-of-River	Renewable	Steel: 289, Cement: 7328	1,514	9.7

Analysis of Findings

The data reveals several critical trends with strategic implications:

- Material Intensity: From a resource policy perspective, Hydro-electric Run-of-River presents a significant challenge due to its unparalleled material intensity, particularly its cement requirement (7,328 tonnes/PJ). Wind technologies are the most steel-intensive. This highlights a strategic shift: a transition to renewables reduces reliance on fossil fuels but dramatically increases dependence on bulk materials and the industrial capacity to process them.
- GHG Emissions: As expected, fossil fuel technologies have life-cycle GHG emissions orders of magnitude higher than nuclear and renewable alternatives. To meet the 2° Paris Climate Agreement goal, the sector must reduce its average emissions to a maximum of 20,071 tonnes CO₂ eq./PJ by 2050. All fossil fuel technologies without carbon capture significantly exceed this threshold, rendering them non-compliant for a climate-aligned future.
- Gross External Energy Ratio (GEER): GEER is a critical measure of energeticeconomic viability. It is a variant of Energy Return on Investment (EROI) and represents the ratio of lifetime electricity output to the *external energy* required to build,

fuel, and maintain the plant, excluding its own parasitic load (the power it consumes itself). In contrast, the Gross Energy Ratio (GER) *includes* parasitic load as an input. A low GEER implies that a larger portion of the economy's resources must be dedicated to the energy sector itself, potentially causing economic stress. Nuclear (34.8) and Hydro-Dam (24.7) exhibit the highest GEER values, signifying strong energetic performance.

1.4. The Electrical Grid: From Generation to Consumption

The modern electrical grid is a complex, interconnected network designed to deliver power efficiently and reliably from large-scale generation facilities to millions of end-users. This process involves transforming electricity to different voltage levels to optimize its journey. The system has four primary components:

- 1. Generation: Power plants generate electricity by converting primary energy sources (fossil fuels, nuclear, hydro, wind, solar) into electrical energy. This is typically done using turbines to turn a generator, which produces Alternating Current (AC) at a voltage of approximately 20 kV.
- 2. Transmission: To transport power over long distances with minimal energy loss, the voltage must be significantly increased. Power is sent from the generating station to a step-up transformer, which raises the voltage to between 138 kV and 765 kV. Power lost in a transmission line is proportional to the square of the current; increasing the voltage allows for a corresponding decrease in current, drastically reducing losses. This high-voltage power travels along the transmission network, which forms the backbone of the grid.
- 3. Subtransmission: The high-voltage power from the transmission network terminates at transmission substations. Here, transformers step the voltage down to an intermediate level, typically between 69 kV and 138 kV. This subtransmission network supplies power to large industrial customers and smaller distribution substations.
- 4. **Distribution:** At distribution substations, the voltage is stepped down again to a primary distribution level (2.2 kV to 46 kV). This power is carried along feeders that run along streets. Finally, local distribution transformers (often mounted on poles or pads) perform the last step-down to the utilization voltage required by commercial and residential customers (e.g., 120/240 V in the U.S.).

The ability to efficiently step voltage up and down is the primary reason that **Alternating Current (AC)** became the global standard. **Transformers**, the devices that change voltage levels, function based on the principles of electromagnetic induction and only work with alternating current.

1.5. Power Market Structures: A US vs. EU Comparison

The United States and the European Union have developed distinct, highly sophisticated wholesale power markets to manage the generation and flow of electricity. While both aim to ensure reliability and cost-effectiveness, their organizational structures and operational mechanisms differ significantly. The U.S. model, with its regional ISOs, is a direct legacy of its historical path of breaking up vertically integrated monopolies, as outlined in acts like PURPA, which fostered competition at the generation level.

United States Power Markets	European Union Power Markets	
Primary Organizational Model	Managed by regional Independent System Operators (ISOs) or Regional Transmission Organizations (RTOs), which operate the transmission grid and the competitive wholesale markets.	
Key Regulatory Bodies	Federal Energy Regulatory Commission (FERC) regulates interstate transmission and wholesale markets. North American Electric Reliability Corporation (NERC) sets and enforces reliability standards. Commodity Futures Trading Commission (CFTC) regulates derivatives markets.	
Short-Term Consist of a Day-Ahead Market, where ~95% of trades occur Real-Time Market for balancing the grid in the moment.		
Price Setting & Congestion Management	Uses Locational Marginal Pricing (LMP). Prices are calculated for thousands of individual nodes across the grid, reflecting the cost of generation, transmission losses, and grid congestion. LMP directly translates the physical constraints of the transmission and subtransmission network, described in section 1.4, into transparent price signals.	
Cross-Border Mechanism	Physical power traders purchase transmission rights on ISO-owned lines through portals like the Open Access Technology International (OATI) system.	

The sheer complexity of these interconnected physical, economic, and regulatory systems makes a detailed, functional understanding a non-negotiable for effective 21st-century energy leadership. Structured learning tools are therefore essential for mastering these critical concepts.

Chapter 2: Study Guide for Electric Power Systems

This study guide is designed to reinforce the core concepts presented in the briefing document. It provides tools to test foundational knowledge, encourage critical thinking about the broader implications of energy systems, and clarify essential terminology. The following sections include a knowledge review quiz with a corresponding answer key, a series of analytical essay questions, and a comprehensive glossary of key terms.

2.1. Knowledge Review Quiz

- 1. What is the fundamental difference between static electricity, as first observed by Thales of Miletus, and current electricity?
- 2. Identify the two competing electrical systems in the "War of Currents" and name the key proponents of each.
- 3. Define Gross External Energy Ratio (GEER) and explain its significance as a metric for evaluating energy technologies.
- 4. What is the primary reason for using high-voltage Alternating Current (AC) for long-distance power transmission?

5. List three key counterparties involved in the regulation and operation of a typical EU power market.

- 6. According to the source data, which electricity generation technology is the most cement-intensive?
- 7. What was the key invention by Alessandro Volta in 1799, and why was it a major breakthrough for electrical science?
- 8. How does a "smart grid" represent an evolution from the traditional power grid?
- 9. What are the four primary components of the electrical grid, from the power plant to the consumer?
- 10. According to the scientific paper, what is the 2050 target for CO2 equivalent emissions per PJ of electricity to meet the 2° Paris Climate Agreement goal?

2.2. Answer Key

- 1. Static electricity refers to stationary electric charges that build up on a surface. In contrast, current electricity is the flow of moving electric charges (electrons) through a conductor in a closed circuit.
- 2. The "War of Currents" was a competition between Direct Current (DC), championed by Thomas Edison, and Alternating Current (AC), championed by Nikola Tesla and George Westinghouse.
- 3. GEER is a measure of energetic-economic viability, defined as the ratio of an energy system's lifetime electricity output to the external energy required for its construction, fueling, and maintenance, excluding its own parasitic load. A low GEER indicates that a larger portion of societal resources must be dedicated to the energy sector, which can cause economic stress.
- 4. High-voltage AC is used for long-distance transmission to minimize power loss. By stepping up the voltage using transformers, the current is proportionally reduced, and since power loss is proportional to the square of the current, energy losses are dramatically lower.
- 5. Three key counterparties in an EU power market are the National Regulatory Authority (NRA), the Transmission System Operator (TSO), and Nominated Electricity Market Operators (NEMOs), which are the energy exchanges.
- 6. According to the data, Hydro-electric Run-of-River is the most cement-intensive technology, requiring 7,328 tonnes of cement per PJ of electricity output.
- 7. Alessandro Volta invented the first true battery, known as the "voltaic pile," in 1799. It was a breakthrough because it produced a steady, continuous electric current for the first time, enabling sustained electrical experiments.
- 8. A smart grid is an evolution from the traditional grid because it incorporates intelligent power distribution networks. This allows for better management of the grid, integration of renewable energy, and more efficient operation through two-way communication and data analytics.

9. The four primary components of the electrical grid are: Generation, Transmission, Subtransmission, and Distribution.

10. The 2050 target to meet the 2° Paris Climate Agreement goal is a maximum of 20,071 tonnes of CO2 equivalent per PJ of electricity output.

2.3. Essay Questions

- 1. Analyze the socio-environmental trade-offs of transitioning from a fossil-fuel-dominant electricity mix (e.g., pulverized coal) to one with a majority share of renewable sources (e.g., onshore wind and solar PV). Use the life-cycle metrics of GHG emissions, material use, and job creation from the source material to support your analysis.
- 2. Trace the historical evolution of the electrical grid's regulatory framework in the United States, from the era of vertical monopolies in the early 1900s to the modern restructured markets. Discuss the impact of key legislation like PUHCA, PURPA, and the Energy Policy Acts.
- 3. Compare and contrast the market mechanisms for managing cross-border electricity flow and grid congestion in the United States (LMP) and the European Union (Market Coupling). Evaluate the primary goals and operational differences of each approach.
- 4. Michael Faraday's 1831 discovery of electromagnetic induction is cited as arguably the most important electrical discovery. Justify this claim by explaining the principle of electromagnetic induction and tracing its impact on the development of practical technologies like electric generators, motors, and transformers.
- 5. Using the provided data, evaluate the argument that natural gas is a suitable "bridge fuel" for a low-carbon future. Your analysis should consider its life-cycle GHG emissions and GEER compared to both coal and renewable alternatives.

2.4. Glossary of Key Terms

Term/Acronym	Definition
AC (Alternating Current)	An electric current that periodically reverses direction. It is the standard for power grids because its voltage can be easily changed with transformers.
DC (Direct Current)	An electric current that flows in only one direction. Used in early power systems and internally by many modern electronic devices.
EROI (Energy Return on Investment)	A general term for the ratio of energy output from a process to the energy input required to establish and operate it. GEER is a specific type of EROI.
FERC	Federal Energy Regulatory Commission. The U.S. federal agency that regulates the interstate transmission of electricity, natural gas, and oil.
GEER (Gross External Energy Ratio)	A life-cycle energy return ratio that measures the lifetime electricity output of a power plant divided by the external energy inputs

	(excluding its own parasitic load). It is a key indicator of energetic-economic viability.		
Independent System Operator (ISO)	An organization in the U.S. that manages the scheduling of power generation, transmission, and the wholesale energy markets within its operational area.		
Locational Marginal Pricing (LMP) A pricing mechanism used in U.S. power markets where the electricity is calculated at thousands of specific locations (nod the grid, reflecting generation costs and transmission congests)			
NERC	North American Electric Reliability Corporation. The organization responsible for developing and enforcing reliability standards for the bulk power system in North America.		
Nominated Electricity Market Operator (NEMO) An energy exchange in the EU nominated by a national regularization operate the day-ahead and intraday markets and ensure the functionality of market coupling.			
Ohm (Ω)	The standard unit of electrical resistance, representing the opposition to the flow of current.		
Transformer	A device that transfers electrical energy between circuits by changing voltage levels through electromagnetic induction. It only works with Alternating Current.		
Transmission System Operator (TSO)	An entity in the EU responsible for ensuring the stability and balance of the high-voltage power grid in its operational area.		
Volt (V)	The standard unit of electric potential difference or electromotive force, representing the "pressure" that pushes electric current.		
Watt (W)	The standard unit of power, representing the rate at which electrical energy is transferred. One watt is equal to one joule per second.		
Bidding Zone	A defined geographical area in the EU power market, typically aligned with national borders, within which all electricity trades at a single market price.		
<u></u>	I		

These learning tools provide a structured approach to internalizing the complex dynamics of modern power systems, a necessary prerequisite for addressing frequently encountered strategic questions.

Chapter 3: Frequently Asked Questions (FAQs)

This section addresses ten of the most common and important questions related to the topics of electricity generation, history, and markets. The answers provided are clear, concise, and based on the information synthesized from the source documents.

3.1. Top 10 Questions Answered

1. Who actually invented electricity?

Electricity is a natural phenomenon and was therefore not "invented" by any single person. Its properties were discovered and harnessed over centuries. The ancient Greeks, specifically Thales of Miletus around 600 BCE, made the first recorded observations of static electricity. However, the practical application of electricity involved contributions from many key figures, including Benjamin Franklin, Alessandro Volta, Michael Faraday, Thomas Edison, and Nikola Tesla.

2. What was the "War of Currents" and why did Alternating Current (AC) win?

The "War of Currents" was a fierce commercial and technical rivalry in the 1880s and 1890s between Thomas Edison, who championed Direct Current (DC), and George Westinghouse and Nikola Tesla, who advocated for Alternating Current (AC). AC won primarily because of its superior efficiency for long-distance power transmission. Using transformers, AC voltage could be easily and cheaply stepped up to very high levels for transmission (minimizing power loss) and then stepped back down for safe use by consumers. DC systems were limited to very short transmission distances.

3. Why can't we just use low-voltage Direct Current (DC) everywhere since many devices use it internally?

The primary obstacle is transmission efficiency. To deliver power over the vast distances from power plants to consumers without massive energy losses, high voltage is necessary. The key technology that enables efficient voltage change is the transformer, which fundamentally requires Alternating Current (AC) to operate. While modern power electronics have made DC-to-DC voltage conversion possible (as seen in HVDC transmission), the legacy and economic efficiency of the AC-based transformer system remains the standard for the bulk of the power grid.

4. Which renewable energy source is the "best"?

There is no single "best" renewable energy source; each has its own profile of advantages and disadvantages. The optimal choice depends on geography, economic goals, and policy priorities.

- Onshore Wind has a strong GEER (13.5) and creates a moderate number of jobs, but it is material-intensive in steel and cement.
- Solar PV is highly dependent on location. In a high-irradiance region like Chile, its GEER is excellent (13.8), but in a low-irradiance region like the UK, its GEER falls to 4.8, making it less energetically viable.
- **Hydro-electric Dams** have a very high GEER (24.7) and low lifecycle GHG emissions, but they require immense amounts of cement and have significant land and water use impacts due to the creation of large reservoirs. A diversified mix of renewables is generally considered the most robust strategic approach.

5. How do operators keep the electrical grid from collapsing?

Grid operators, such as Independent System Operators (ISOs) in the U.S. and Transmission System Operators (TSOs) in the EU, are responsible for the moment-to-moment balancing of the grid. They must ensure that the amount of electricity generated precisely matches consumer demand at all times to maintain a stable frequency (e.g., 60 Hz in North America). In addition, organizations like the North American Electric Reliability Corporation (NERC) develop and

enforce mandatory reliability standards that all grid participants must follow to prevent largescale failures like blackouts.

6. Will a transition to renewable energy create or destroy jobs?

The data indicates a net job increase, largely because renewable technologies are fundamentally more material-intensive per unit of energy produced. The higher requirements for steel in wind turbines and glass and silicon in solar panels, for example, translate directly to increased labor demand in manufacturing, installation, and maintenance over the system's life cycle. For instance, a grid dominated by offshore wind could require a 75%-110% increase in jobs per PJ compared to the 2015 global benchmark, while a system with a majority share of onshore wind could see a 15%-45% increase.

7. What is the difference between a regulated and a restructured electricity market?

In a traditionally **regulated** market, a single "vertically integrated" utility owns the generation, transmission, and distribution systems. This utility operates as a monopoly, and its prices are regulated by a public utility commission. In a **restructured** market, these functions are separated. Generation becomes a competitive market where multiple companies sell power into a wholesale market managed by an independent operator (like an ISO/RTO). Consumers in many restructured states can choose their retail electricity provider.

8. How does electricity get from a power plant in one country to a consumer in another?

Electricity crosses national borders through high-voltage **interconnections**. In Europe, this process is managed by a system called **market coupling**. An EU-wide algorithm (EUPHEMIA) simultaneously calculates prices in different national bidding zones and allocates cross-border transmission capacity in the most efficient way possible, creating a single, integrated day-ahead market. This allows low-cost power in one country to flow seamlessly to meet high demand in another.

9. What are the biggest environmental impacts of electricity generation, beyond carbon emissions?

Beyond carbon emissions, key environmental impacts include:

- Material Consumption: Renewable technologies like wind and solar can be significantly more material-intensive per unit of energy than fossil fuels, requiring large amounts of steel, cement, copper, and glass.
- Land Use: Large-scale solar farms and wind farms require significant land area. Hydroelectric dams can have the largest footprint, flooding vast areas of land to create reservoirs, which alters ecosystems and can displace communities.
- Water Use: Thermal power plants (coal, natural gas, nuclear) require substantial
 amounts of water for cooling. Hydroelectric power fundamentally alters river flows and
 water systems.

10. What is "distributed generation" and how is it different from a traditional power plant?

Distributed generation (DG) is the production of electricity near the point of consumption, typically on a small scale. This includes rooftop solar panels on homes and businesses or small local generators. It is fundamentally different from the traditional **centralized generation** model,

where large power plants (hundreds or thousands of megawatts) are located far from cities and send power over long-distance transmission lines. DG reduces transmission losses but requires a more complex grid prepared for bidirectional energy flow.

Understanding the long historical arc that produced these complex systems provides essential context for navigating their future evolution.

Chapter 4: Historical Timeline of Key Electrical Developments

This chapter presents a chronological timeline of the major scientific discoveries, inventions, and policy milestones that have shaped the history of electricity. From the earliest observations in antiquity to the complex, interconnected systems of the modern era, these developments chart the course of humanity's journey to harness one of nature's most powerful forces.

4.1. Chronology of Electrical Innovation

Date/Period	Key Event or Discovery	Primary Individual(s)/Entity
600 BCE	First recorded observation of static electricity by rubbing amber ("elektron").	Thales of Miletus
1752	The kite experiment proves that lightning is a form of electricity.	Benjamin Franklin
1799	Invention of the "voltaic pile," the first true electric battery, producing a continuous current.	Alessandro Volta
1831	Discovers electromagnetic induction , the principle that a changing magnetic field creates an electric current. This is the foundation for electric generators and transformers.	Michael Faraday
1879	Develops a practical and commercially viable incandescent light bulb.	Thomas Edison
1881	French inventor Lucien Gaulard patents a transformer device; the patent is later sold to George Westinghouse.	Lucien Gaulard
1882	Opens the Pearl Street Station in New York City, the world's first commercial central power plant, using a DC system.	Thomas Edison (General Electric)
1880s	Develops the AC induction motor and the polyphase AC system, enabling efficient power generation and use.	Nikola Tesla
1885-1886	Invents and demonstrates the first practical transformer, establishing the commercial feasibility of the AC system. IEEE officially recognizes him as the inventor.	William Stanley

1889	The first single-phase AC transmission line in the U.S. is built in Oregon (4 kV, 21 km).	(N/A)
1896	Hydroelectric power generated at Niagara Falls is transmitted to power the city of Buffalo, a major victory for the AC system.	Westinghouse / Tesla
1935	The Public Utilities Holding Company Act (PUHCA) is passed in the U.S. to break up large, unregulated utility holding companies.	U.S. Government
1947	The invention of the transistor at Bell Labs, which replaced bulky vacuum tubes and launched the modern electronics revolution.	Bell Labs
1968	The North American Electric Reliability Council (NERC) is formed in response to the 1965 Northeast Blackout to ensure grid reliability.	U.S. Electric Utility Industry
1978	The Public Utilities Regulatory Policies Act (PURPA) is passed, requiring utilities to buy power from independent generators and fostering competition.	U.S. Government
2000s- Present	Development and deployment of smart grid technologies and large-scale integration of renewable energy sources like wind and solar.	Global Energy Industry
L	I .	L

This historical progression provides the foundation for the primary source materials used to compile this analysis.

Chapter 5: Sources

The following list comprises the source documents used in the creation of this report, formatted in a standard scientific citation style.

5.1. List of Cited Works

- 1. Kis, Z., Pandya, N., & Koppelaar, R. H. E. M. (2018). Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction. *Energy Policy*, 120, 144-157.
- 2. Pontenagel, P. (n.d.). A Comparison of European and American power markets. Time2Market.
- 3. Just Energy. (2025, May 6). How Does Electricity Work? Just Energy Blog.
- 4. VIOX Electric. (2025, July 19). The Complete History of Electricity: Timeline & Key Discoveries. VIOX Electric Blog.
- 5. Delfos Energy. (2025, May 8). Power Generation: what it is, trends, and main types of power generation. Delfos Energy Blog.

6. (n.d.). ELECTRIC POWER SYSTEMS • A BRIEF HISTORY - •ANCIENT AND MODERN. [Presentation Slides].

- 7. (n.d.). SECTION 1: OVERVIEW OF THE ELECTRICAL GRID. ESE 470 Energy Distribution Systems. [Course Material].
- 8. CompaniesMarketCap.com. (n.d.). Top publicly traded electricity companies by revenue. Provided source material.

This document can be inaccurate; please double check its content. For more information visit PowerBroadcasts.com

