An Integrative Report on Macronutrient Metabolism, Insulin Function, and Dietary Impact on Health

Chapter 1: Briefing Document: The Interplay of Diet, Hormones, and Cellular Energy

1.1. Introduction: The Foundations of Energy Metabolism

This briefing document synthesizes the foundational principles of how the body processes the three primary macronutrients—proteins, carbohydrates, and fats—and the pivotal role of hormonal signals, particularly insulin, in maintaining metabolic homeostasis. A strategic understanding of these core mechanisms is essential for navigating the complexities of metabolic health and disease. To produce the energy and building blocks necessary for life, the body is remarkably adept at using available food, breaking down these macronutrients through distinct metabolic pathways that are governed by a sophisticated system of hormonal control.

Proteins Upon digestion, proteins are broken down into their fundamental components, amino acids. The primary role of these amino acids is to serve as the building blocks for creating new proteins with specific functions, such as enzymes that catalyze biochemical reactions, hormones that regulate physiological processes, and structural components for tissues, muscles, and organs. While proteins are crucial for growth and repair, they can also be used as a secondary energy source when the diet is deficient in carbohydrates or fats.

Fats Dietary fats are a major energy source, typically providing more than half of the body's energy needs. They are broken down into fatty acids, which can be used immediately by cells for energy. Any fatty acids not needed right away are packaged into bundles called triglycerides and stored in fat cells. A key characteristic of fat storage is its unlimited capacity, allowing the body to maintain a long-term energy reserve.

Carbohydrates Digestible carbohydrates are broken down into glucose, a simple sugar that enters the bloodstream. Glucose serves as the body's most readily available source of energy, and its use is prioritized by cells after a meal. The body can store only a limited quantity of carbohydrates. Excess glucose is stored in the liver as glycogen, which can be released between meals to maintain stable blood sugar levels. However, once the liver's glycogen storage capacity is full, any remaining glucose is converted into fat for long-term storage.

As carbohydrates provide the most immediate energy source, the body has evolved a sophisticated hormonal system to manage their breakdown into glucose, making the regulation of blood sugar a critical nexus of metabolic control.

1.2. Blood Sugar Regulation and the Glycemic Index

Given that carbohydrates are the body's preferred and most immediate energy source, maintaining a stable supply of blood sugar, or glucose, is critical for the function of every cell, especially the brain. To manage the variable impact of different carbohydrate-containing foods, researchers have developed tools like the Glycemic Index (GI) and Glycemic Load (GL). These metrics are crucial for quantifying how carbohydrate-containing foods affect blood glucose levels and have become central to managing metabolic health.

The body's blood sugar homeostasis is managed by a precise interplay between two key hormones produced by the pancreas: insulin and glucagon.

• When blood sugar levels **rise** after a meal, the pancreas produces **insulin**. Insulin acts like a key, prompting cells in the liver, fat, and skeletal muscles to absorb glucose from the blood for energy or storage.

As cells absorb glucose, blood sugar levels begin to fall. In response, the pancreas
produces glucagon. Glucagon signals the liver to release its stored sugar (glycogen) back
into the bloodstream.

Historically, carbohydrates were classified as either "simple" or "complex." While this model provided a basic framework, it failed to fully account for the diverse effects of carbohydrate-rich foods on blood sugar. The Glycemic Index (GI) was developed as a more accurate measure, ranking carbohydrates on a scale from 0 to 100 based on how quickly and how much they raise blood sugar levels after consumption.

GI Category	GI Value
Low	55 or less
Medium	56-69
High	70 or greater

Consuming a diet rich in high-GI foods, which cause rapid and substantial fluctuations in blood sugar, can lead to an increased risk for type 2 diabetes and heart disease, while its connection to overweight is the subject of ongoing research. Conversely, diets based on low-GI foods, which are digested more slowly and cause a gradual rise in blood sugar, have been shown to help control type 2 diabetes and improve weight loss.

While the GI is useful, it does not account for the amount of carbohydrate in a serving of food. To provide a more complete picture, researchers developed the Glycemic Load (GL). The GL considers both the GI and the amount of digestible carbohydrate in a serving. A GL of 10 or under is considered low, 11 to 19 is medium, and 20 or more is high.

Several factors can influence a food's GI score:

- Processing: Refined grains have a higher GI than minimally processed whole grains.
- Physical Form: Finely ground grain is digested more rapidly than coarsely ground grain.
- **Fiber Content:** High-fiber foods slow digestion, leading to a more gradual rise in blood sugar.
- Ripeness: Ripe fruits and vegetables tend to have a higher GI than unripened ones.
- Fat and Acid Content: The presence of fat or acid in a meal slows the conversion of carbohydrates into sugar.

The effective management of blood sugar, as dictated by dietary choices, ultimately revolves around the body's response to the primary hormone responsible for glucose uptake: insulin.

1.3. The Central Role of Insulin: Structure, Synthesis, and Cellular Action

Following from the critical need to regulate blood glucose, this section focuses on insulin, the body's main anabolic hormone. Its primary function is to orchestrate the metabolism of carbohydrates, fats, and proteins by promoting the storage of these nutrients within cells. Here, we delve into insulin's molecular structure, its synthesis pathway, and the precise signaling cascade it triggers to manage cellular energy.

The human insulin protein is a peptide hormone composed of 51 amino acids. It has a heterodimeric structure, consisting of an **A-chain** (21 amino acids) and a **B-chain** (30 amino acids) linked together by two disulfide bonds. It is produced and stored in the body as an inactive hexamer (a unit of six insulin molecules), which provides long-term stability. The biologically active form is the monomer, which is released into the bloodstream.

Insulin is synthesized in the beta cells of the pancreas through a multi-step process beginning with a precursor called **preproinsulin**.

- 1. Preproinsulin is translated in the rough endoplasmic reticulum (RER), where its signal peptide is cleaved to form **proinsulin**.
- 2. As proinsulin folds, disulfide bonds form, connecting what will become the A and B chains.
- The folded proinsulin is transported to the Golgi apparatus and packaged into secretory vesicles.
- 4. Within these vesicles, enzymes cleave proinsulin, removing a middle section known as the C-peptide. This cleavage results in the final, active insulin molecule, consisting of the A- and B-chains held together by the disulfide bonds.

When insulin is released into the bloodstream, it initiates a complex signal transduction cascade upon binding to its receptor on the surface of target cells, such as those in muscle and fat tissue.

- 1. Insulin binds to the alpha subunit of its receptor (IR) on the cell membrane.
- 2. This binding triggers the tyrosine kinase activity of the receptor's beta subunits, leading to autophosphorylation (the receptor phosphorylates itself).
- 3. The activated receptor then phosphorylates other proteins inside the cell, known as insulin receptor substrates (IRS).
- 4. Phosphorylated IRS proteins activate a signaling cascade, including the enzyme phosphoinositol 3 kinase (PI3K).
- 5. PI3K activation leads to the activation of another kinase, protein kinase B (PKB).
- 6. Activated PKB facilitates the fusion of vesicles containing the **GLUT4 glucose transporter** with the cell membrane. This action inserts the GLUT4 channels into the membrane, allowing glucose to move from the blood into muscle and fat cells.

The physiological effects of insulin are wide-ranging and critical for metabolic balance. Key actions include:

• **Stimulates glucose uptake:** By promoting the insertion of GLUT4 transporters into cell membranes in muscle and adipose tissue.

• **Promotes glycogen synthesis:** Activates enzymes that convert glucose into glycogen for storage in the liver and muscles.

- **Increases fat synthesis:** Forces fat cells to take in glucose, which is then converted into triglycerides for long-term storage.
- Increases amino acid uptake: Forces cells to absorb circulating amino acids, promoting
 protein synthesis.
- Decreases proteolysis: Reduces the breakdown of protein.
- **Decreases gluconeogenesis:** Inhibits the production of glucose by the liver from other substrates.

The integrity of this signaling network is paramount for metabolic health. The next section explores the pathological consequences that arise when this intricate system becomes impaired.

1.4. Pathogenesis of Insulin Resistance: The Mitochondrial Overheating Hypothesis

When cells fail to respond effectively to insulin, a condition known as insulin resistance develops, which is a hallmark of type 2 diabetes. Rather than a primary cellular defect, a leading hypothesis frames this condition as a protective response to chronic energy surplus. At the heart of this hypothesis is adenosine triphosphate (ATP), which acts as a dual-signal molecule. Excess ATP acts *intracellularly* to disrupt energy-sensing pathways like AMPK and mTOR. Simultaneously, it acts *extracellularly*—following co-secretion with insulin and subsequent degradation to ADP—to dysregulate hormonal balance in the pancreatic islet, leading to hyperinsulinemia and hyperglucagonemia. This ATP-driven cascade is triggered by a phenomenon termed "mitochondrial overheating."

According to the "ATP as a primary signal" hypothesis, obesity leads to an oversupply of metabolic substrates (glucose, fatty acids, and amino acids) to the mitochondria. This substrate overload forces mitochondria to produce elevated levels of ATP, independent of the cell's actual energy demand. This sustained overproduction of ATP is proposed to be the key initiating signal for systemic insulin resistance. The process can be summarized as: Obesity \rightarrow Substrate Increase \rightarrow Mitochondrial Overheating \rightarrow ATP Increase.

This chronically elevated ATP level triggers several downstream consequences that promote insulin resistance:

- AMPK Inhibition: The high ratio of ATP to its lower-energy counterpart, AMP, inhibits AMP-activated protein kinase (AMPK), a critical cellular energy sensor. Normally, AMPK promotes glucose uptake and mitochondrial biogenesis. Its inhibition by excess ATP reduces the cell's ability to take in glucose, contributing directly to insulin resistance.
- mTOR/S6K Activation: High levels of ATP can activate the mTOR/S6K signaling pathway. This pathway is known to inhibit insulin receptor substrates (specifically IRS-1) through serine phosphorylation, thereby disrupting the insulin signal transduction cascade and promoting resistance.
- **Hyperinsulinemia:** In pancreatic β-cells, the same substrate overload that causes mitochondrial overheating in muscle and fat cells leads to the hypersecretion of insulin. The resulting state of hyperinsulinemia (excessively high insulin levels) becomes a risk

factor in itself, as chronically high insulin can cause cells to down-regulate their insulin receptors in a negative feedback loop, further worsening insulin resistance.

• Hyperglucagonemia: Beyond its intracellular effects, the energy surplus manifests as an extracellular signal in the pancreatic islet. Excess extracellular ATP and its derivative ADP, co-secreted with insulin, directly stimulate glucagon secretion from α-cells. Elevated glucagon contributes to higher blood glucose by promoting glucose production in the liver, thereby exacerbating hepatic insulin resistance.

From this perspective, insulin resistance is a cellular self-preservation mechanism that comes at a steep systemic cost. By impairing the cell's ability to take up more substrates, it protects the mitochondria from the damaging effects of being overloaded. However, this protective adaptation is achieved through a combined assault of intracellular signaling disruption, hyperinsulinemia, and hyperglucagonemia—all driven by the central signal of ATP overproduction.

1.5. Dietary Protein: Recommendations, Controversies, and Health Outcomes

The concept of energy surplus logically leads to an examination of dietary inputs, where an increasing popular emphasis has been placed on high-protein diets for health. This section objectively examines the official recommended dietary allowances for protein, presents evidence of widespread overconsumption, and explores the complex and often conflicting research on the health impacts of high-protein diets, including the differences between animal and plant sources.

Governmental organizations provide clear guidelines for daily protein intake to meet the needs of healthy individuals.

Organization	Recommendation
USDA (RDA)	0.8 g of protein per kg of body weight
BHF	0.75 g of protein per kg of body weight
FDA	50 g of protein for a 2000-calorie diet

However, actual consumption patterns in many wealthy nations far exceed these recommendations. In the United States, men consume approximately twice the Recommended Dietary Allowance (RDA), and women's intake exceeds it by about 50%. This trend of protein overconsumption is common in most developed regions globally.

The source of dietary protein—animal versus plant—is a critical factor in its health effects.

- Completeness: Animal proteins (from meat, eggs, and milk) are considered "complete proteins" because they provide all nine essential amino acids that the human body cannot synthesize. Most plant proteins are "incomplete," lacking one or more essential amino acids. Exceptions include soy and quinoa, which are complete plant proteins.
- **Digestibility & Anti-nutrients:** Plant proteins can be more difficult to digest due to their structural complexity and the presence of anti-nutrients. These compounds, such as phytic acid, tannins, and protease inhibitors, can interfere with the absorption of minerals and the breakdown of proteins.

Research on the health outcomes of high-protein diets (HPDs) has produced conflicting results, often depending on the protein source and the health metric being studied.

- Cardiovascular Health: Multiple meta-analyses have found that higher plant protein consumption is associated with a lower risk of stroke and all-cause cardiovascular mortality. One large analysis reported that an additional 3% of daily energy from plant protein was associated with a 5% lower risk of death from all causes. In contrast, total and animal protein intake often show no significant association or are linked to a higher risk of cardiovascular mortality.
- **Kidney Function:** Evidence suggests that high dietary protein intake (≥1.2 g/kg/day) can accelerate the decline of kidney function in at-risk populations, such as older adults with heart disease and individuals with pre-existing impaired kidney function. However, it is also crucial to note the risks of insufficient intake; one large study found that low protein intake (<0.6 g/kg/day) increased mortality in those with normal kidney function, highlighting the need for a balanced approach.
- Bone Health: The hypothesis that high protein intake, especially from animal sources, could lead to bone loss (osteoporosis) has been challenged by recent research. Most meta-analyses have found no association between HPDs and osteoporosis and even suggest that higher protein intake may reduce the risk of hip fractures, provided that calcium intake is adequate.

In summary, while adequate protein intake is undeniably essential, excessive consumption presents a complex risk-benefit profile. The ultimate health impact requires careful consideration of the protein source, an individual's underlying health status, and the context of their overall dietary pattern.

Chapter 2: Study Guide

2.1. Knowledge Review: Short-Answer Quiz

This quiz assesses your understanding of the core concepts presented in this report. Please answer each question in 2-3 sentences.

- 1. What is the primary function of insulin, and which cells produce it?
- 2. Explain the difference between the Glycemic Index (GI) and the Glycemic Load (GL).
- 3. What are the three primary stages of cellular respiration and where do they occur?
- 4. Describe the key structural differences between animal proteins and most plant proteins regarding amino acid composition.
- 5. What is "mitochondrial overheating" and what is its proposed role in the development of insulin resistance?
- 6. How does a high intracellular ATP level affect the AMPK signaling pathway?
- 7. Briefly outline the two phases of insulin release from beta cells in response to glucose.

8. Name two "anti-nutrients" found in plant-based proteins and describe their effect on digestibility.

- 9. According to the research cited, what was the effect of high-dose insulin infusion on mitochondrial ATP production in healthy individuals versus those with type 2 diabetes?
- 10. What is hyperinsulinemia and how can it contribute to insulin resistance?

2.2. Answer Key

- 1. Insulin's primary function is to regulate the metabolism of carbohydrates, fats, and proteins by promoting the absorption of glucose from the blood into liver, fat, and skeletal muscle cells. It is an anabolic hormone produced by the beta cells of the pancreatic islets.
- 2. The Glycemic Index (GI) ranks carbohydrate foods on a scale of 0-100 based on how quickly they raise blood sugar levels. The Glycemic Load (GL) provides a more complete picture by taking into account both the GI and the total amount of digestible carbohydrate in a serving of the food.
- 3. The three stages are glycolysis, which occurs in the cytosol; the citric acid cycle (Krebs cycle), which takes place in the mitochondrial matrix; and oxidative phosphorylation, which occurs in the mitochondrial inner membrane.
- 4. Animal proteins are "complete," meaning they provide all nine essential amino acids the human body needs. Most plant proteins are "incomplete" because they are missing or have insufficient amounts of one or more of these essential amino acids.
- 5. "Mitochondrial overheating" describes a state in obese conditions where an oversupply of substrates (glucose, fatty acids) causes mitochondria to produce excess ATP, independent of the body's actual energy demand. This ATP overproduction is proposed to be a primary signal that triggers insulin resistance as a protective feedback mechanism.
- 6. A high intracellular ATP level, which leads to a high ATP/AMP ratio, inhibits the AMPK signaling pathway. Since AMPK is an energy sensor that promotes glucose uptake, its inhibition contributes to insulin resistance by reducing the cell's ability to take in glucose.
- 7. The first phase is a rapid release of pre-formed insulin granules triggered by rising blood glucose, lasting about 10 minutes. The second phase is a sustained, slower release of newly synthesized insulin vesicles that peaks in 2 to 3 hours.
- 8. Two anti-nutrients are phytic acid (in legumes/grains), which binds to minerals like iron and zinc, reducing their absorption, and tannins (in legumes/beans), which can interfere with protein breakdown.
- 9. In healthy individuals, high-dose insulin infusion increased mitochondrial ATP production rates by 32–42%. In contrast, patients with type 2 diabetes showed no change in mitochondrial ATP production, demonstrating a diminished response to insulin.
- 10. Hyperinsulinemia is a condition of having excessively high levels of insulin in the blood. It can contribute to insulin resistance through a negative feedback mechanism where

persistently high insulin levels cause cells to down-regulate their insulin receptors, becoming less sensitive to the hormone's signal.

2.3. Critical Thinking: Essay Questions

These questions are designed to encourage deeper analysis of the report's topics.

- 1. Analyze the "mitochondrial overheating" hypothesis as a unifying mechanism for insulin resistance. How does it connect the dots between obesity, hyperinsulinemia, hyperglucagonemia, and cellular dysfunction?
- 2. Compare and contrast the health implications of a diet high in animal protein versus a diet high in plant protein, using evidence from the provided cohort studies and meta-analyses on cardiovascular disease, kidney function, and type 2 diabetes risk.
- 3. Discuss the evolution of classifying carbohydrates from the "simple vs. complex" model to the Glycemic Index and Glycemic Load. Evaluate the practical utility and limitations of using GI/GL for managing metabolic health conditions like diabetes.
- 4. Synthesize the information on insulin's discovery and production technologies. Explain how the historical breakthroughs, from its initial extraction to the development of recombinant DNA technology, have transformed the management of diabetes.
- 5. Based on the source materials, construct an argument that insulin resistance is not merely a pathology but a physiological protective adaptation. What is it protecting the cells from, and at what cost to the whole organism?

2.4. Glossary of Key Terms

Term	Definition
Amino Acids	The building blocks that link together to form proteins. Nine are considered "essential" as they must be obtained through diet.
Anabolic Hormone	A hormone that promotes the conversion of small molecules in the blood into large molecules in the cells, such as the synthesis of glycogen, triglycerides, and proteins. Insulin is the main example.
ATP (Adenosine Triphosphate)	The primary energy currency of the cell, produced by mitochondria during cellular respiration.
Catabolism	The metabolic process of breaking down large molecules into smaller ones, often to release energy. Low insulin levels promote widespread catabolism.
Cellular Respiration	The multi-stage process that converts biochemical energy from nutrients into ATP. It includes glycolysis, the citric acid cycle, and oxidative phosphorylation.
Complete Protein	A protein source, typically from animals, that provides all nine essential amino acids that the human body needs.

ЕНРО	Exceptionally High-Protein Diet. A diet where protein intake significantly exceeds recommended values.
Glucagon	A hormone produced by the alpha cells of the pancreas that raises blood glucose levels by signaling the liver to release stored sugar (glycogen).
Gluconeogenesis	The production of glucose from non-carbohydrate substrates, which primarily occurs in the liver.
Glycemic Index (GI)	A measurement that ranks foods containing carbohydrates on a scale from 0 to 100 according to how much they affect blood sugar levels after consumption.
Glycemic Load (GL)	A measure that takes into account both the Glycemic Index of a food and the amount of carbohydrate in a serving.
Hyperinsulinemia	A condition characterized by excess levels of insulin circulating in the blood relative to the level of glucose.
Incomplete Protein	A protein source, typically from plants, that is missing or does not have enough of one or more of the essential amino acids.
Insulin	A peptide hormone produced by the beta cells of the pancreas that regulates the metabolism of carbohydrates, fats, and proteins by promoting the absorption of glucose from the blood into cells.
Insulin Resistance	A condition in which muscle, fat, and other cells stop responding effectively to the hormone insulin, causing blood sugar and insulin levels to stay high long after eating.
Mitochondria	Cellular organelles that are the primary site of skeletal muscle fuel metabolism and ATP production through cellular respiration.
RDA (Recommended Dietary Allowance)	The daily intake level of a nutrient that is considered to be sufficient to meet the requirements of 97–98% of healthy individuals.

Chapter 3: Frequently Asked Questions (FAQs)

- 1. Is it true that everyone should eat a high-protein diet for better health? Not necessarily. While adequate protein is essential, the sources indicate that most people in wealthy nations already consume more protein than the Recommended Dietary Allowance (RDA). Exceptionally high-protein diets can pose risks, particularly for kidney health in susceptible individuals, and the benefits are debated and depend on factors like protein source and physical activity.
- 2. What's more important for managing blood sugar: the type of carbohydrate (GI) or the amount? Both are important. The Glycemic Index (GI) tells you how quickly a carbohydrate raises blood sugar, while the Glycemic Load (GL) incorporates the amount of carbohydrate in a serving. For this reason, many experts believe GL gives a more

- realistic picture of a food's impact. A healthy approach involves choosing low-GI foods and being mindful of portion sizes.
- 3. Are plant-based proteins nutritionally inferior to animal proteins? Not necessarily, but there are key differences. Animal proteins are "complete," containing all essential amino acids. Most plant proteins are "incomplete," so it's important to eat a variety of plant sources to get a full amino acid profile. Plant proteins can also contain "anti-nutrients" that may slightly reduce nutrient absorption, but studies associate plant protein intake with a lower risk of cardiovascular disease and mortality.
- 4. Can consuming too much protein be harmful to my kidneys? For healthy individuals, the risk is low, but for those with pre-existing conditions, it can be a concern. Studies show that high dietary protein intake (e.g., ≥1.2 g/kg/day) can accelerate the decline of kidney function in older adults with heart disease or those with already impaired kidney function.
- 5. How does obesity lead to type 2 diabetes? Obesity creates a state of energy surplus, leading to an oversupply of substrates like glucose and fatty acids to the body's cells. According to one major hypothesis presented, this causes "mitochondrial overheating," where mitochondria produce an excess of ATP. This excess ATP is thought to trigger a cascade of events—including inhibition of key enzymes like AMPK—that results in insulin resistance, a precursor to type 2 diabetes.
- 6. If insulin is a protein, why can't it be taken as a pill? Insulin cannot be taken orally because, like nearly all proteins introduced into the gastrointestinal tract, digestive enzymes would break it down into fragments. This process would destroy its structure and render it inactive before it could be absorbed into the bloodstream.
- 7. What is the difference between Glycolysis and Gluconeogenesis? They are opposing processes. Glycolysis is the breakdown of glucose to produce energy (ATP). Gluconeogenesis is the synthesis or production of glucose from non-carbohydrate sources, primarily in the liver, to raise blood sugar levels when they are low.
- 8. Will eating a high-protein diet help me build muscle without exercise? The evidence suggests it is unlikely. One study on older men found that increasing protein intake from 0.8 g/kg/day to 1.3 g/kg/day did not affect lean body mass, muscle power, or strength in the absence of an exercise intervention. Exercise combined with adequate protein is the key to building muscle.
- 9. What happens to extra protein in the diet if it isn't used to build muscle? The body does not store extra protein as protein. Instead, the excess amino acids are converted to carbohydrates or fats for energy or storage.
- 10. Is insulin resistance always a "bad" thing? From a cellular perspective, insulin resistance can be seen as a protective mechanism. In a state of energy surplus (obesity), it reduces the uptake of glucose and fats into cells, protecting the mitochondria from being overloaded and damaged. However, at the whole-body level, this "protective" adaptation leads to high blood sugar and the pathologies associated with type 2 diabetes.

The understanding and treatment of diabetes were revolutionized by the discovery and subsequent development of insulin. This timeline outlines the key milestones, from early physiological observations that linked the pancreas to diabetes, to the development of modern biosynthetic insulin that transformed a fatal disease into a manageable condition.

- 1869: Paul Langerhans, a medical student in Berlin, identifies previously unnoticed cell clumps in the pancreas, later named the islets of Langerhans.
- 1889: Oskar Minkowski and Joseph von Mering remove the pancreas from a dog and
 observe that it develops diabetes, establishing the first link between the pancreas and the
 disease.
- 1901: Eugene Lindsay Opie isolates the pancreas's role in diabetes to the destruction of the islets of Langerhans.
- 1916: Nicolae Paulescu develops a pancreatic extract that normalizes blood sugar in a diabetic dog. The name "insulin" is coined by Edward Albert Sharpey-Schafer for the hypothetical molecule responsible.
- 1921 (July 30): Frederick Banting and Charles Best, working in John Macleod's lab at the University of Toronto, successfully isolate a pancreatic extract ("isletin") and inject it into a diabetic dog, reducing its blood sugar significantly.
- 1922 (January 11): Leonard Thompson, a 14-year-old boy, becomes the first human to receive an injection of the insulin extract. After initial impurities cause a reaction, a refined version is successfully administered by James Collip on January 23.
- 1923: Banting and Macleod are awarded the Nobel Prize in Physiology or Medicine for the discovery of insulin. They share their prize money with Best and Collip, respectively. The patent for insulin is sold to the University of Toronto for \$1.00.
- 1951: Frederick Sanger characterizes the complete amino acid structure of insulin, making it the first protein to be fully sequenced.
- 1969: Dorothy Hodgkin determines the three-dimensional crystal structure of insulin using X-ray crystallography.
- 1978: Genentech produces the first genetically engineered, synthetic "human" insulin using *E. coli* bacteria.
- 1982: Eli Lilly and Company sells the first commercially available biosynthetic human insulin under the brand name Humulin.

Chapter 5: List of Sources

The following sources were used to compile this integrative report.

 Maleky, F., & Ahmadi, L. (2025). Adhering to recommended dietary protein intake for optimizing human health benefits versus exceeding levels. RSC Advances, 15, 9230-9242. DOI: 10.1039/D4RA08221D.

2. Harvard T.H. Chan School of Public Health. (n.d.). *Carbohydrates and Blood Sugar*. The Nutrition Source.

- 3. Stump, C. S., Short, K. R., Bigelow, M. L., Schimke, J. M., & Nair, K. S. (2003). Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. *Proceedings of the National Academy of Sciences*, 100(13), 7996–8001. DOI: 10.1073/pnas.1332551100.
- 4. (Source Author/Organization Not Specified). (n.d.). GLYCEMIC INDEX CHART.
- 5. Health Net. (n.d.). How the body uses carbohydrates, proteins and fats.
- 6. Wikipedia. (n.d.). Insulin. https://en.wikipedia.org/w/index.php?title=Insulin&oldid=1296103202.
- 7. Ye, J. (2021). Mechanism of insulin resistance in obesity: a role of ATP. Frontiers of Medicine, 15(3), 372–382. DOI: 10.1007/s11684-021-0862-5.
- 8. Lee, S. (2025, June 9). The Ultimate Guide to Cellular Respiration. Number Analytics.
- 9. Richards, L. (2021, February 8). What are high and low glycemic index foods? (J. Kubala, MS, RD, Ed.). Medical News Today.
- 10. Diabetes Canada. (2018). Glycemic Index Food Guide.

This document can be inaccurate; please double check its content. For more information visit PowerBroadcasts.com

